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The results of an electron-nuclear double resonance study of the cubic paramagnetic Yb3+ center in
Cs2NaYF6 and CsCaF3 single crystals are presented. The values and signs of the transferred hyperfine inter-
action �THFI� parameters for several neighboring shells are determined. It is found that the relevant parameters
for the two studied matrices differ, in spite of the fact that the nearest environment of the rare earth ion is
nearly identical. A first-principles theoretical analysis is performed for the THFI parameters of the first coor-
dination shell of F− ions. Several mechanisms of metal ion-ligand coupling are considered and it is found that
one of them, ligand polarization, explains the difference observed for the THFI parameters in Cs2NaYF6 and
CsCaF3.
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I. INTRODUCTION

Up to now first-principles calculations of ligand hyperfine
interaction parameters for paramagnetic impurity cations
�transferred hyperfine interaction �THFI�� were mainly per-
formed for ions with a nonfilled 3d shell by the molecular
orbital method �MO-LCAO� in the approximation of a strong
crystal field.1,2 In case of an intermediate crystal field, when
the free ion terms present a good zero order approximation,
the Heitler-London method is more adequate. In Ref. 1 it was
shown as well that taking into account covalency effects in
the MO-LCAO method is equivalent to taking into account
the interaction of different configurations due to the transfer
of an electron from one of the ligands to the metal ion in the
Heitler-London method. These ideas were developed further
in Ref. 3 and were called the method of configuration inter-
action �CI�. For the rare-earth ions �RE� the eigenstates of
the total angular momentum J are a good zero approximation
and the crystal field presents only a weak perturbation. In
this case the wave function of the paramagnetic impurity is
the superposition of a very large number of determinants and
the exact CI calculations in the coordinate representation be-
come practically impossible. Nevertheless, several simplified
variants of the CI method for RE centers are used by intro-
ducing fitting parameters or a series of approximations.4,5 In
such phenomenological models the observed physical prop-
erties of the RE complex are described sufficiently well by
expressions proportional to the squares of the overlap inte-
grals with the ligand atomic orbitals and the proportionality
coefficients are treated as fitting parameters.6,7 At present, to
interpret spectroscopic data theoretically, density functional
calculations are often used.8,9 They are successfully applied
to both impurity centers, e.g., in the calculation of the Stark
splitting of Mn2+ in KMgF3,10 and regular paramagnetic
crystals, as, e.g., for the calculation of the hyperfine interac-
tions in La2CuO4 in a cluster approximation.11 However, in
spite of a large number of papers claiming that they deal with

first-principles calculations, to the best of our knowledge,
there are no papers on the calculation of THFI parameters for
impurity RE centers. At the same time, in the case of a RE
when the ion wave functions are a good zero approximation
and the metal-ligand overlap integrals are sufficiently small,
it would be natural to treat this problem from a perturbation
theory point of view.

As noted above, the CI solution of this problem in the
coordinate representation is practically impossible because
of the nonorthogonality of the orbitals of the impurity RE
centers. Therefore it was natural to use the secondary-
quantization method to solve this problem. In Refs. 12 and
13 the secondary-quantization method is developed on the
basis of partially nonorthogonal orbitals. In these papers the
dual basis is introduced. As a result, the one-particle and
two-particle operators become non-Hermitian in this repre-
sentation. The quantum mechanical averaging of these opera-
tors in order to reduce the Hamiltonian of the impurity center
to a spin Hamiltonian is impossible because all operators
herein, used to describe the experiment, are Hermitian.

Thus, the problem arises of building Hermitian operators
in the secondary-quantization representation with a basis of
partially nonorthogonal orbitals. Some progress in this direc-
tion was achieved in Refs. 14 and 15. However, the form of
the operator was determined only with an accuracy up to the
squares of the overlap integrals of the orbitals. As a conse-
quence, the contribution of the nonorthogonality effects
higher than of second order remained unclear. At the same
time, the advantage of the approach proposed in Refs. 14 and
15 is that the quantum numbers of the creation and annihila-
tion operators are the quantum numbers of the ion orbitals,
allowing one to use the well-developed technique of irreduc-
ible tensor operators and secondary quantization in atomic
spectroscopy.16

In Refs. 17–19, the main processes resulting in the ap-
pearance of hyperfine fields on the ligand nuclei in the RE
impurity centers were determined by perturbation theory in
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the framework of Refs. 14 and 15. However, the amplitudes
of the electron transfer were treated as fitting parameters
with their order determined by the relevant overlap integrals.
This is justified in agreement with numerous results on the
theory of iron-group paramagnetic impurity centers. In Refs.
20 and 21, an expression was obtained for an arbitrary op-
erator in the orthonormalized multiparticle basis in the
secondary-quantization representation with a basis of par-
tially non-orthogonal orbitals with the creation and annihila-
tion operators satisfying the conventional Fermi relations.

In the present paper, using the results of Refs. 20 and 21,
the operators are obtained that account for the contributions
to the THFI parameters from the transition of an electron to
the metal ion valence shell arising in the third order of per-
turbation due to electron-hole interaction and to interaction
of the electron transferred to the empty shell with the valence
shell electrons. In contrast to Refs. 17–19, the possibility to
exactly take into account the nonorthogonality effects in the
considered orders of perturbation allows one to pass from the
semiempirical scheme of electron transition to the construc-
tion of all possible diagrams corresponding to the considered
process. In turn, these diagrams allow one to easily find the
corresponding operators.

Experimentally, THFI was studied by means of electron-
nuclear double resonance �ENDOR� on impurity Yb3+ cen-
ters with cubic symmetry �Tc� in the cubic elpasolite
�Cs2NaYF6� and perovskite �CsCaF3� type single crystals.
These crystals are promising materials for applications as
laser media or storage phosphors and are convenient model
systems to study the optical and magnetic properties of RE
impurity centers and their theoretical interpretation. These
single crystals are chosen because the Y3+, Ca2+, and Cs+

cations in them have practically the same nearest environ-
ment and the interionic distances, e.g., between Y3+ �Ca2+�
and F− �RCa2+-F− =2.262 Å and RY3+-F− =2.264 Å for CsCaF3
�Ref. 22� and Cs2NaYF6 �Ref. 23�, respectively�, are practi-
cally identical. Nonetheless, they have different mechanisms
of cation substitution by the trivalent RE, which, in turn, may
influence the optical and magnetic parameters. For example,
in the optical measurements of the cubic Yb3+ center in these
crystals it was observed that the crystal field parameters dif-
fer strongly.24 Apparently, one should expect a similar situa-
tion for the THFI parameters. This creates a good model
situation for testing the theory. THFI for the cubic Yb3+ cen-
ter in Cs2NaYF6 was studied by ENDOR in Ref. 25. How-
ever, it should be noted that in Ref. 25 the signs of the
interaction parameters with the nearest F− shell are not reli-
able because they are in contradiction with the results in
similar octahedral surroundings.26 The information about the
signs plays a key role in the understanding of the THFI na-
ture. Therefore, the present work contains an additional ex-
perimental study of the THFI for this RE center.

The remainder of this paper is organized as follows. In the
second section the results of the experimental study are pre-
sented. In the third section the expressions are derived for
calculating the amplitudes of electron transition to a central
ion with one hole in an otherwise filled shell �4f13 configu-
ration�. The electron transition amplitudes from the ligand to
the 4f and 5d shells of the central ion are calculated from

first principles. The 5s, 5p, 4f , and 5d orbitals of the central
ion and 2s and 2p ligand orbitals of the free ions are chosen
as basis set. Finally, the experimental results are theoretically
interpreted in the fourth section.

II. EXPERIMENTAL RESULTS

CsCaF3:Yb3+ single crystals were grown by the
Bridgman-Stockbarger method in graphite crucibles in a
fluorine atmosphere by adding 1.5 mol % of YbF3 to the
melt. The resulting concentration of Yb3+ in the sample was
approximately 0.01%. Cs2NaYF6 single crystals doped with
0.01, 0.1, 1.0, and 10.0 at. % Yb3+ were synthesized by the
chemical reaction of alkali fluoride aqueous solutions with
mixtures of Yb2O3 and Y2O3 at a temperature of 750 K and
pressures of 100–150 MPa. EPR and ENDOR experiments
were carried out on modified X-band ERS-231,27 a Bruker
ESP300E X band, and Bruker Elexsys E500 Q-band spec-
trometers at T=4.2–10 K.

The analysis of the EPR spectra showed that Yb3+ ions
form several paramagnetic centers �PCs� in CsCaF3 with dif-
ferent symmetries: cubic �Tc�, tetragonal, and trigonal. In
Cs2NaYF6, the Yb3+ ions form one PC, Tc. The THFI were
only studied for the Tc centers in both crystals. In order to
accurately identify the ENDOR lines as belonging to definite
F− and Cs+ ions and to determine the THFI parameters, their
angular dependences were recorded on the even Yb3+ isotope
while rotating the magnetic field H in a �001� plane �Fig. 1�.
The interpretation of the ENDOR spectra showed that at the
formation of Tc in CsCaF3, the Yb3+ ions substitute Ca2+

�aliovalent substitution�, i.e., the excess positive charge is
compensated nonlocally, and in Cs2NaYF6 they substitute
Y3+ isovalently. Figure 2 shows the fragments of the crystal
structures of the two matrices studied. The positions of the
Yb3+ impurity ions are shown. Yb3+ ions in a perfect octa-
hedral crystal field have the �6 Kramers doublet as ground
state. The ENDOR spectra are described by the standard spin
Hamiltonian.27 The obtained THFI parameters are given in
Table I, where T� and T� are the principal values of the THFI
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FIG. 1. Experimental angular dependence of the ENDOR spec-
tra of the cubic Yb3+ in CsCaF3 and Cs2NaYF6 with the magnetic
field H rotated in the �001� plane. 0°—�100� and 45°—�110�.
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tensor, and As= �T� +2T�� /3 and Ap= �T� −T�� /3 are their
isotropic and anisotropic parts, respectively. For comparison,
the data for Yb3+ in KMgF3 and KZnF3 �Ref. 26� are given
in Table I as well. The sign of the g factors is determined
theoretically.28 To determine the signs of the THFI param-
eters, the method developed in Ref. 29 was used. Figure 3
shows the ENDOR frequencies of the fluorine transitions
of the first coordination shell observed on the different Yb3+

isotopes in Cs2NaYF6, compared with those calculated for
different signs of the THFI parameters. Experimental and
theoretical points practically coincide with the results of the
present work. Table I shows that the THFI parameters for
Cs2NaYF6:Yb3+ determined in this paper coincide with data
of Ref. 25 but have opposite signs. It was established that the
THFI parameters of Yb3+ for fluorine elpasolites and perovs-
kites have the same sign, i.e., the dominant mechanisms of
the rare-earth ion–ligand coupling in the two fluoride com-
pounds are similar. It should be noted that the method29

allowed us to determine not only the signs of the THFI pa-
rameters but also the signs of the hyperfine interaction con-
stant �A� for the 171Yb and 173Yb isotopes in Cs2NaYF6
�171A=−2057 MHz and 173A=567 MHz� and specify them
for the A values in CsCaF3 �171A�0 and 173A�0� given in
Ref. 30. Figure 4 shows the experimental and theoretical
angular dependences plotted on the basis of data from Table
I. It is seen that the experimental dependences are described

TABLE I. Experimental THFI parameters �in MHz� of Yb3+ with fluorine and cesium ions. ao is the crystal lattice constant �in Å�. R is
the distance between Yb3+ and the corresponding ligand in the undistorted crystal lattice. Ad is the parameter of the dipole-dipole interaction
�g�gn�n /R3�.

g factor
Ligand

ion
Coordination
ligand shell

R
�Å� T� T� As Ap Ad

CsCaF3

ao=4.523a
���2.591 F I 2.262 8.651 26.540 20.577�10� −5.963�10� −8.289

II 5.058 −1.513 0.730 −0.025�10� −0.755�10� −0.741

Cs I 3.917 0.446 0.223 0 −0.214�10� −0.223

Cs2NaYF6

ao=9.066b
���2.588�5� F I 2.264 9.695 28.319 22.111�10� −6.208�10� −8.268

II 5.068 −1.491 0.761 0.015�10� −0.746�10� −0.740

Cs I 3.926 −0.442 0.221 0 −0.221�10� −0.222

Cs2NaYF6 ���2.581 F I −22.07 6.198 8.19 c

Cs I −0.006 0.239 0.221

KZnF3

ao=4.040
���2.582 F I 2.020 11.415 29.211 23.065 −5.965 −11.645 d

KMgF3

ao=3.973
���2.584 F I 1.987 11.135 29.03 23.279 −5.932 −12.283

aReference 5.
bReference 6.
cReference 25.
dReference 26.

Cs2NaYF6CsCaF3

- Na+- Yb3+- Ca2+ (Y3+)- Cs+ - F -

FIG. 2. Fragments of the crystal lattices of CsCaF3 and
Cs2NaYF6.
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FIG. 3. Dependence of the first 19F shell ENDOR frequencies
on the magnetic resonance field for evenYb3+ and 171Yb3+ isotopes
in Cs2NaYF6. �—experiment, �—calculated with parameters
given in this paper, and �—calculated with parameters of Ref. 25.
The EPR spectrum of Tc Yb3+ is shown at the bottom. The hyper-
fine structure lines of the Yb3+ isotopes are shown as well.
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very well. The THFI parameters for the fluorine ions of the
second coordination sphere of F and Cs practically coincide
with the data calculated according to the dipole model. This
indicates that the relaxation of the crystal lattices in the vi-
cinity of Yb3+ is small and the coincidence of the interionic
distances RYb3+-F− in both crystals. Nevertheless, analogous
to the optical studies in Ref. 24, it is observed that the THFI
parameters As and Ap for the first F− coordination sphere in
the studied crystals differ strongly. It should be noted as well
that data for Cs2NaYF6 do not fit the general dependence
observed for these parameters on the Yb3+-F− distance �cal-
culated for the undistorted crystal lattices� in the homologous
series of cubic perovskite type fluorides �Fig. 5�.

III. THEORY

Let us denote the one-particle operator h as a sum of the
kinetic energy of electron, electron-nuclear Coulomb interac-
tion, and Coulomb interaction of electron with the crystal
lattice and the two-particle operator u as the Coulomb inter-

action of electrons. In Ref. 20 it was shown that an arbitrary
operator H being a sum of h and u in a basis set of partially
nonorthogonal orbitals may be expressed in the form of an
operator series of H�. In this case, under the assumption of
the existence of the �I+S�−1 matrix with I being a unit op-
erator and S being the overlap matrix for one-electron orbit-
als, the effects of nonorthogonality are exactly taken into
account in each term of the above series. Then according to
Ref. 20,

H� = �
n=0

�

cn�Q,H̄��2n�, cn =
E2n

22n�2n�!
, �1�

where H� is determined on the functions

	�	�
 = �
	

a	
+	0
 ,

a	
+ �a	� is the creation �annihilation� operators for electrons in

the ion orbitals. In contrast to Refs. 12 and 13, where the
anticommutator of the creation and annihilation operators of
the ion orbitals is equal to the corresponding overlap inte-
gral, here a	

+ �a	� satisfy the conventional relations for Fermi
operators, i.e.,

a	a	� + a	�a	 = a	
+a	�

+ + a	�
+ a	

+ = 0, a	�a	
+ + a	

+a	� = 
		�

Note that the particle number operator number in our ap-
proach is21

N� = � a	
+a	

Interestingly, careful consideration showed that E2n in Eq.
�1� are Euler numbers �E0=1, E2=−1, E4=5, E6=−61, E8
=1385, E10=−50521, etc.�. It follows from the properties of
the series with cn coefficients that, in case the matrix ele-

ments of the �Q , H̄��2n� operators are bounded, they are
convergent,31

H̄ = � a	
+a	��		h̄		�
 +

1

2 � a	
+a�

+a��a	��	�	ū		���
 ,

�		�I + S�−1	�
 
 �			�
,

�		�I + S�−1	�
��	�I + S�−1	

 
 �	�		�

 ,

�		h̄		�
 =
1

2 � �			�
��	h		�
 +
1

2 � �		h	�
��			�
 ,

�	�	ū		���
 =
1

2 � �	�		�

��
	u		���


+
1

2 � �	�	u	�

��
			���
 ,

where the operator Q=�a	
+a	��	 	q 		�
, q=ln�I+S�, and h

and u are the one-particle and two-particle operators, respec-
tively,
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FIG. 4. Experimental and theoretical angular dependences of the
ENDOR lines in the �001� plane. �—experiment and——theory
with the THFI parameters from Table I. 0°—�100� and 45°—�110�.
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�Q,H̄��n� 
 †Q,�Q, ¯ �Q,H̄� ¯ �‡ , �2�

where �Q , H̄� is the commutator and the expression in the
right-hand side of Eq. �2� denotes n commutators.

Let us consider the operator q=ln�I+S�. Its matrix ele-
ments in the case of a convergent logarithmic series may be
calculated from

ln�I + S� = S −
S2

2
+

S3

3
− ¯ . �3�

It is possible to formally present the left-hand side of
equality �3� as an integral

ln�I + S� = �
0

1

�I + �S�−1d� � S�
i=1

N

�I + �iS�−1�� , �4�

where �I+�iS�−1 is the matrix reciprocal to �I+�iS� and �i
= i /N. However, the expression on the right from the sign of
approximate equality is an integral sum of this integral. It
exists always when the matrix �I+S�−1 exists. It is easy to
check by direct calculation that if series �3� is convergent,
the integral sum in Eq. �4� already at N=106 and ��=10−6

coincides with Eq. �3� with high accuracy. Calculations show
that if series �3� is divergent, the matrix calculated according
to Eq. �4� exists. For overlap integrals which are sufficiently
small, the corresponding matrix elements �4� have the same
sign and order of magnitude as the values of these integrals.
Therefore, the matrix elements of the operator q=ln�I+S�
will further on be understood in the sense of equality �4�.
Thus, in general the value of the overlap integrals can be
arbitrary.

A. Operator of transferred hyperfine interaction

To derive the operator of the hyperfine interaction on the
ligand, we use the formalism of perturbation theory for de-

generate states as considered in Ref. 32. The H̄0 operator
used in the present paper is defined according to Ref. 17.
Then the operator of the transferred hyperfine interaction V,
acting in the space of the low-lying quasidegenerate states of

the Hamiltonian H̄0 and written down with accuracy to the
third-order terms in the metal-to-ligand transition energy, is
as follows:

V = V̄ −
1

8
�Q,V̄��2� + �V̄,�F1 + F2��

− F1V̄F1 − F1V̄F2 − F2V̄F1,

F1ml = −
H̄ml

�ml
, �ml = Em − El

where Em and El are the zero-order energies of the low-lying
quasidegenerate states and of the excited states, respectively.

H̄ml, H̄mm�, and H̄l�l are matrix elements of the Hamiltonian
operators considered as a perturbation,

F2ml = �
m�

H̄mm�H̄m�l

�ml�m�l
− �

l�

H̄ml�H̄l�l

�ml�ml�
, Fmm� = Fll� = 0.

Let us now in particular consider processes leading to the
appearance of the hyperfine fields on the ligand nuclei. The
contribution from the electron transition from a ligand orbital
to the partially filled central ion shell is found as follows.
The operator V1 corresponding to these processes is written
in the secondary-quantization presentation.16 Then, by re-
stricting to second-order perturbation terms, we get

V1 = � a	
+a	��1

4
�		q	

��	q		�
 −

1

2
�̄	
��			�


−
1

2
�			

�̄�	� + �̄	
�̄�	���
	�	�
 , �5�

where � is the hyperfine interaction operator, and 	, 	� and �,
�� are quantum numbers of the central ion and ligand orbit-
als, respectively,

�̄	
 = −
�		G	


	��	�,�
�	

,

�		G	

 is the amplitude of the electron transition from the
ligand to the central ion, 
 is the ligand orbital, 	 is the
central ion orbital, 	��	�,�
�	 is the transition energy from
ground to excited state. Formula �1� shows that the correc-
tions to Eq. �5� from the fourth-order commutators will be
fourth- and higher-order corrections on the metal-ligand
overlap area. Moreover, the ratio of the coefficients of the
third and second terms in Eq. �1� is 0.104 17. Therefore in
this paper these corrections are supposed to be small and will
be neglected.

In Eq. �5�, nonorthogonality effects are taken into account
exactly, under the supposition that the matrix �I+S�−1 exists.
For the further calculations it is therefore necessary to derive
expressions for the electron transition amplitudes to the par-
tially filled shell. Within the present approach expressions for
the electron transition amplitudes to the higher empty shells
were obtained and discussed in Ref. 33. In the general case,
the operator of electron transition from one ion to another is
a two-particle operator. However, following Ref. 33 it is easy
to show that for transition to a shell having one electron less
than the completely filled shell �configurations 3d9, 4f13,
etc.�, it reduces to a one-particle operator,

G�f 	b
 = � a	
+a
�		G	

 ,

where 
 is the orbital of ligand b, and 	 is the central ion
orbital.
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2�		G	

 = �			

��	
qe−1 + �

�̇e

�	�̇e	u�1 − P�		�̇e
���̇e		�̇e
 − 1� + hM
	 + �


qb + �
�̇b

�
�̇b	u�1 − P�	
�̇b
���̇b		�̇b
 − 1� + hM



− �
	
ne + me

	r − Re	
	

 + �

�̇e�	

�
�̇e	u�1 − P�	
�̇e
��̇e		�̇e
 − �		
nb + mb

	r − Rb	
		
 + �

�̇b�


�	�̇b	u�1 − P�		�̇b
��̇b		�̇b
� + ��				


+ �
		

���		hk	

 − �		
ne + me

	r − Re	
	

 + �

�̇e

�	�̇e	u�1 − P�	
�̇e
��̇e		�̇e
 − �		
nb + mb

	r − Rb	
	

 + �

�̇b

�	�̇b	u�1 − P�	
�̇b
��̇b		�̇b
� ,

�6�

where all quantities referring to the central ion are denoted
with an index e, those referring to the ligand with an index b,
u is the Coulomb interaction of electrons, and P is the per-
mutation operator. The summation over �̇e includes all orbit-
als of the filled shells in the ground configuration and all
valence shell orbitals for the central ion. Summation over �̇b
runs over all ligand orbitals in the ground configuration. The
�	

qe−1 and �

qb values are Hartree-Fock energies of the electron

on the orbital 	 of the central ion and on the ligand orbital 
,
respectively, as determined for free ions; hk is the kinetic
energy operator; hM

	 and hM

 are the Madelung energies of the

electron on the central ion and ligand, respectively. hl= 	r
−Rl	−1, l=e, b; and ne+me and nb+mb are the sum of the
number of electrons and shifts from the ion charge in the
pure crystal in the ground configuration on the central ion
and ligand, respectively.

Let us consider the following third-order process. The
electron is transferred from the ligand to the valence shell of
the central ion. Then the valence shell electron is transferred
to one of the higher lying orbitals by the electrostatic field of
the hole occurring on the ligand �the electron-hole interac-
tion� and returns. The V2 operator taking into account the
contributions of such processes to the constants of the THFI
was obtained in Ref. 18. The covalency parameters were
considered as the fitting parameters and the nonorthogonality
effects were taken into account by assuming �I+S�−1� I−S.
By using the present approach, for the operator V2 we obtain

V2 = � a	
+a	�

�		heh	�

	�	
	

�1

4
��		

��			�
 −

1

2
��		

�̄�	�

+
1

2
�̄�
��			�
 − �1 +

	�	
	
	���	��̄�
�̄�	���
	�	�
 + H.c.

�7�

where 	 and 	� are the quantum numbers of the valence shell
orbitals, � are the quantum numbers of the orbitals of the
higher-lying empty shells, � and 
 are the quantum numbers
of the ligand orbitals, and heh is the operator of the electron-
hole interaction. Note that on the basis of Eq. �1� the form of
operator �7� can be easily determined by using the diagram
method. If the 6a and 6b diagrams in Fig. 6 corresponding to
the fourth term in square brackets in Eq. �7� are called the
forming ones, then the 6ab1, 6ab2, and 6ab3 diagrams are
obtained by including the matrix elements of the �I+S�−1

matrix in it. The diagrams Hermitian conjugated to the 6a,
6ab1, 6ab2, and 6ab3 refer to the same situation. The 6b
diagram is not Hermitian conjugated to the 6a diagram. At
the same time, the introduction of the matrix elements of �I
+S�−1 in this diagram does not result in new diagrams since
they are Hermitian conjugated to the 6ab1, 6ab2, and 6ab3
diagrams. Thus we obtained all possible operators of the per-
turbation series corresponding to the process under consider-
ation.

Next, let us consider the following process. An electron
from the ligand goes to a higher empty shell of the central
ion. As a result of the Coulomb exchange interaction, contri-
butions to the hyperfine field on the ligand from transitions
of the electron with spin up differ from those with down. The
operator V3, taking into account contributions to the trans-
ferred hyperfine constant from such processes in the frame-
work of a semiempirical approach, is given in Ref. 17. By
using the present approach, for V3 we obtain
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1
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3
(a)
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4f
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+
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+

+f

f
'
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+

bξ'
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+

bθ'

1
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1

2

(ab3)

2

1

3

FIG. 6. Processes of the electron transfer to the 5d shell, where
Gp,d is the amplitude of electron transition from the ligand 2p shells
to the 4f and 5d shells of the REI, heh is the operator of the
electron-hole interaction, � is the operator of the hyperfine interac-

tion, f
	�̇

+, and f	� are the creation and annihilation operators of the

4f-shell electrons, d�
+ and d� are the creation and annihilation op-

erators of the 4d-shell electrons b+ and b are the creation and anni-
hilation operators of the ligand 2s and 2p shell electrons, and 1–4—
sequence of the electron transitions �see text for details�.
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V3 = � a	
+a	�

�	�	u�1 − P�		���

	��
	

��̄��
�̄�� −
1

4
���		

��		�
�

��
	�	�
 + H.c.

where 	 and 	� are the quantum numbers of the valence shell
orbitals, � and �� are the quantum numbers of higher empty
shell orbitals, � and 
 are quantum numbers of the ligand
orbitals, and u is the Coulomb interaction operator of the
electrons.

Finally, let us consider another third-order process. The
electron goes from the ligand to the valence shell of the
central ion. Then the electron-hole interaction transfers the
hole on the ligand to the other orbital and the electron returns
back. This process can be considered as the ligand polariza-
tion. By using the present approach, we obtain for the opera-
tor V4,

V4 = � a	
+a	��1

4
�			

��			�
 −

1

2
�			

�̄�	� −

1

2
�̄	
��			�


+ �̄	
�̄�	�� �
	heh	�

	�	�	

��	�	�
 + H.c. �8�

where 	 and 	� are quantum numbers of the valence shell
orbitals, �, 
, and � are quantum numbers of ligand orbitals,
and heh is the operator of the electron-hole interaction. The
form of the operator V4 can be determined with the diagrams
in Fig. 7, the same as that of the V2 operator. Figures
7�a�–7�d� determines the fourth, second, first, and third terms
in square brackets in Eq. �8�, respectively.

It is obvious that the operator V4 is the next-order correc-
tion to the operator V1. Unlike V2, two cases should be con-
sidered for V4. If the valence of the dopant ion is one unit
larger than that of the host ion, then at the electron transition

from the ligand to the central ion the charge symmetry of the
ligand environment is restored. The transitions at the ligand,
forbidden for the host crystal, will be forbidden in the con-
sidered excited configuration as well, at least in the approxi-
mation of an electrostatic field. In the case of isovalent sub-
stitution the charge symmetry of the ligand environment is
broken and the transitions forbidden for the ground configu-
ration may become allowed.

In Ref. 19, it is proposed to take into account another type
of processes resulting in the appearance of hyperfine fields
on the ligand nuclei. These processes include the so-called
core polarization.16 However, to determine the relevant con-
tributions from first principles it is necessary to calculate the
electron transition amplitudes of from the ligand to the 5s,
5p, 6s, and 6p shells of the RE ion. The transition amplitudes
to the 5s and 5p shells can be calculated by perturbation
theory because using the one-particle basis of the present
work the p5si and p5pi matrix elements are on the order of
0.05–0.1. However the possibility to account also for the 6s
and 6p orbitals correctly from the mathematical point of
view, i.e., calculating the �I+S�−1 matrix including these or-
bitals, requires a separate consideration. Note that the 6s and
6p orbitals are used long ago in many parametric approaches
and therefore it is natural to include them in first-principles
calculations. At the same time, the length of the Hartree-
Fock 6s and 6p orbitals of the free trivalent ions is compa-
rable with the distance between the ions. Hence, already in
the zero approximation of their correction it is necessary to
take the influence of at least the nearest environment into
account, i.e., using the Hartree-Fock method for nonorthogo-
nal orbitals.34,35 Here this contribution was only estimated in
the framework of Ref. 19.

B. Operator matrix elements

In this section we give the numerical values of the opera-
tor matrix elements in the above expressions for Yb3+ octa-
hedrally surrounded by fluorine ions. Let us choose the co-
ordinate system as follows. The RE ion is placed in the
coordinate origin, the z axis directed along the fourfold axis.
The ligand coordinates then become 1�a ,0 ,0�, 2�0,a ,0�,
3�0,0 ,a�, 4�−a ,0 ,0�, 5�0,−a ,0�, and 6�0,0 ,−a�. We per-
form all calculations for the electron transition from ligand
6�0,0 ,−a�. The true RYb3+-F− distance in the crystals under
study is not known; therefore in the calculations below the
value RYb3+-F− =2.20 Å was used, being the sum of the ionic
radii for Yb3+ and F−.36

We used the basis of 5s, 5p, and 4f orbitals,37 5d
orbitals38 for the central ion, and 2s and 2p ligand orbitals,37

thus �I+S�−1 is a 40�40 matrix. No analytical or numerical
expressions are available for the 5d orbitals of Yb3+. We
assumed that Hartree-Fock orbitals of chemically related
ions present a sufficiently accurate approximation.37 The
Yb3+ 5d orbitals were obtained by Gaussian approximation
of the numerical representation of these orbitals for Tm3+.38

The elements of the �I+S�−1 matrix and of the one-
particle operators in Eq. �6�, necessary for calculating the
electron transition amplitudes from the 2s- and 2p0-ligand
orbitals to the 4f0 orbital of Yb3+ are given in Table II,
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bθ
+

bθ'

+f

FIG. 7. Diagram of the ligand polarization, where Gs,p is the
amplitude of electron transition for the ligand 2s and 2p shells to
the REI 4f shell, heh is the operator of the electron-hole interaction,

� is the operator of the hyperfine interaction, f
	�̇

+, and f	� are the

creation and annihilation operators of the 4f-shell electrons, b+ and
b are the creation and annihilation operators of the ligand 2s and
2p-shell electrons, and 1–4—sequence of the electron transitions
�see text for details�.
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hM
e = 0.82, hM

b = − 0.43, �4f
Yb3+

= − 2.006,

�2s
F−

= − 1.0744, �2p
F−

= − 0.18.

The value of �	
qe−1=�	

Yb2+
was determined using the wave

functions of the trivalent Yb3+ ion: in the zero order approxi-

mation they can be presented as �	
Yb2+

=�	
Yb3+

+ �	+ ,	− 	u		
+ ,	− 
, where � are projections of the electron spin on the 	
orbitals. This corresponds to the main assumption that the
virtual processes of charge transfer may be taken into ac-
count in perturbation theory.39 The values of the necessary
two-center integrals of the Coulomb interaction between
electrons are given in Table III.

Estimations of the contributions ��̇b���	�̇b	u�1
− P�		�̇b
��̇b		�̇b
− �		�nb−1� / 	�r−Rb�			
 show that they can
be neglected in the calculation of the transition amplitudes.

By substituting these numerical values into Eq. �6�, the
transition amplitudes are obtained as

�4f0	G	2s
 
 G4fs = 0.013 834 a.u.,

�4f0	G	2p0
 
 G4f� = 0.016 842 a.u.

The calculation of the transition amplitude from the 2p1 or-
bital to the 4f1 orbital is analogous to the calculation of that

from the 2p0 orbital to the 4f0 orbital and its final result is
given,

�4f1	G	2p1
 
 G4f� = − 0.008 653 a.u.

According to Ref. 18 �4f ,2s�1.1 a.u. and �4f ,2p�0.27 a.u..
Thus,

�̄4fs = − 0.0125, �̄4f� = − 0.0624, �̄4f� = 0.0320.

By using the results of Ref. 33 covalency parameters of the
5d shell are obtained as follows:

�̄5ds = 0.132, �̄5d� = 0.154, �̄5d� = − 0.0784.

IV. DISCUSSION

We now calculate the contributions of the aforementioned
processes to the THFI parameters of the centers under con-
sideration. Let us introduce the following notations:

q	� 
 �		q	�
, p	� 
 �			�
 . �8��

We write the quantum numbers in Eq. �8� down analogous to
their form in the transition amplitudes and introduce func-
tions to express the contributions of the considered pro-
cesses. Note that, under the condition of small two-particle

TABLE II. Matrix elements of the �I+S�−1 matrix and the one-particle operators �in a.u.�. Here and in Tables III and IV the calculations
were performed for the distance RYb3+-F− =2.20 Å.

a 5s 5p0 5p1 4f0 4f1 4f2 4f3 2s 2p0

�a		a
 1.06154 1.0387 1.0387 1.00068 1.00036 1.0008 1.00049 1.04926 1.06558

a, b, i 4f0, 2s, k 4f0, 2s, e 4f0, 2s, b 4f0, 2p0, k 4f0, 2p0, e 4f0, 2p0, b 4f0, 4f0, b 2s, 2s, e 2p0, 2p0, e

�a	hi	b
 0.00115465 −0.00371964 −0.00617715 −0.00587399 −0.0063791 −0.00892204 0.24290 0.24051 0.25166

TABLE III. Two-center integrals of the Coulomb interaction of electrons �in �102 a.u.�. In the �ab	u	cd

matrix element the orbital 	a
= 	4f0
.

bcd 5s, 2s, 5s 5s, 5s, 2s 5p0, 2s, 5p0 5p0, 5p0, 2s 5p1, 2s, 5p1

�ab	u	cd
 −0.359219 −0.0138135 −0.426358 −0.0998833 −0.31784

bcd 4f2, 4f2, 2s 4f3, 2s, 4f3, 4f3, 4f3, 2s 4f0, 2s, 4f0 2s, 2s, 2s

�ab	u	cd
 0.0151758 −0.338201 0.0136855 −0.403948 −0.569773

bcd 5s, 2p0, 5s 5s, 5s, 2p0 5p0, 2p0, 5p0 5p0, 5p0, 2p0 5p1, 2p0, 5p1

�ab	u	cd
 −0.605976 −0.0278836 −0.796907 −0.249456 −0.492915

bcd 4f2, 2p0, 4f2 4f2, 4f2, 2p0 4f3, 2p0, 4f3 4f3, 4f3, 2p0 2p0, 2p0, 2p0

�ab	u	cd
 −0.602084 0.0666222 −0.524371 0.0628218 −0.891938

bcd 5p1, 5p1, 2s 4f1, 2s, 4f1 4f1, 4f1, 2s 4f2, 2s, 4f2

�ab	u	cd
 0.0165205 −0.390274 −0.0119372 −0.361699

bcd 2p0, 2s, 2p0 2p0, 2p0, 2s 2p1, 2s, 2p1 2p1, 2p1, 2s

�ab	u	cd
 −0.584476 −0.243708 −0.518993 −0.0505651

bcd 5p1, 5p1, 2p0 4f0, 2p0, 4f0 4f1, 2p0, 4f1 4f1, 4f1, 2p0

�ab	u	cd
 0.0635921 −0.752945 −0.705224 −0.0452261

bcd 2s, 2p0, 2s 2s, 2s, 2p0 2p1, 2p0, 2p1 2p1, 2p1, 2p0

�ab	u	cd
 −0.838229 −0.138923 −0.756463 −0.0185365
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corrections to the transition amplitudes, the contributions of
the above processes for other ions will be expressed through
these functions as well.

f fi
�1� =

1

4
q4fi

2 − p4fi�̄4fi + �̄4fi
2 , i = s,�,� , �9�

f f��
�1� =

1

4
q4f�q4f� −

1

2
p4f��̄4f� −

1

2
�̄4f�p4f� + �̄4f��̄4f�.

�10�

Functions �9� and �10� refer to the V1 operator,

fdi
�2� =

hri

	�4f ,i	
�1

4
p5dip4fi −

1

2
p5di�̄4fi +

1

2
�̄5dip4fi

− �1 +
	�4fi	
	�5di	

��̄5di�̄4fi� , �11�

where �4fs=�4f ,2s, �4f�=�4f�=�4f ,2p and for �5di analo-
gously; hi are the matrix elements of the heh operator,

fd��
�2� =

1

	�4f ,2p	�1

4
�h�p5d�p4f� + h�p5d�p4f�� −

1

2
�h�p5d��̄4f�

+ h�p5d��̄4f�� +
1

2
�h��̄5d�p4f� + h��̄5d�p4f��

− �h��̄5d��̄4f� + h��̄5d��̄4f���1 +
	�4f ,2p	
	�5d,2p	�� . �12�

Functions �11� and �12� refer to the V2 operator,

f f�s
�4� =

hl�s

	�4fs	
�1

4
p4f�p4fs −

1

2
p4f��̄4fs −

1

2
�̄4f�p4fs + �̄4f��̄4fs� ,

�13�

where hl�s is the matrix element of the heh operator of the
ligand. Function �13� refers to the V4 operator.

The analytical expressions for the contributions of the V3
operator to the THFI parameters for an octahedrally sur-
rounded Yb3+ ion are given in Ref. 17. To transfer to first-
principles calculations from the semiempirical expressions in
the present approach, it is necessary to perform the following
substitution in formulas �12a� and �12b� of Ref. 17,

�id� jd ⇒ �̄5di�̄5dj −
1

4
p5dip5dj, i, j = s,�,� ,

where �id=sid+�id, sid is the overlap integral, and �id is a
fitting parameter.17 We denote these contributions as T�

�3� and
T�

�3�.
The transition from the second-quantization operators Vi

to the spin Hamiltonian is performed in a standard way17 and
for the contributions to the THFI parameters we obtain

T� =
1

3
�f fs

�1� + 2fds
�2� + 2f f�s

�4� �as + �2

3
�f f�

�1� + 2fd�
�2�� +

3

2
�f f�

�1�

+ 2fd�
�2�� −�3

2
�f f��

�1� + f f��
�2� ��ap + T�

�3�

T� = −
1

3
�f fs

�1� + 2fds
�2� + 2f f�s

�4� �as + �1

3
�f f�

�1� + 2fd�
�2�� +

3

4
�f f�

�1�

+ 2fd�
�2�� −

13

6
�3

2
�f f��

�1� + fd��
�2� ��ap + T�

�3�,

where as and ap are the parameters of the THFI of the fluo-
rine free ion �as=45.06�103 MHz and ap=1.29�103 MHz
�Ref. 1��.

According to Ref. 18, the matrix elements of the heh op-
erator are

�5d0	heh	4f0
 = hs = h� = 0.0355,

�5d1	heh	4f1
 = h� = 0.0335.

The matrix elements of heh according to Ref. 40 in the first
approximation are determined by the electron-hole Coulomb
interaction. In this approximation, the calculation on the
wave functions37 results in �2p0	heh	2s
=hl�s=−0.036. Ac-
cording to Ref. 18, �5d,2s�1.5 a.u. and �5d,2p�0.68 a.u.
The calculated values of q	� and p	�, necessary to perform
estimates, are given below,

q4fs = − 0.009 290 64, q4f� = − 0.013 98,

q4f� = 0.008 382 87,

p4fs = 0.009 665 65, p4f� = 0.014 604 5,

p4f� = − 0.008 624 18,

p5ds = − 0.2303, p5d� = − 0.2105, p5d� = 0.1292.

By substituting these and above values in formulas
�9�–�13� we obtain the values of the Af and Ap parameters

TABLE IV. Theoretical values of the THFI parameters As and Ap �in MHz� for the first fluorine shell of
Yb3+ in CsCaF3 and Cs2NaYF6 �see text for details�.

Crystal Parameter Ad V1 V2 V3 V4 V5 Sum Expt.

CsCaF3 As 0 10.2 3.5 0.1 0 4 17.8 20.577

Cs2NaYF6 1.3 19.1 22.111

CsCaF3 Ap −9.0 2.5 0.8 −0.3 0 −0.2 −6.2 −5.963

Cs2NaYF6 −0.5 −6.7 −6.208
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given in Table IV, which also shows the terms corresponding
to the contributions of the V1, V2, V3, and V4 parameters. As
indicated above, the contributions of the V5 operator are es-
timated using the approach of Ref. 19. Table IV shows that
the given approach allowed us to obtain both the correct
order of magnitude and sign of the experimental THFI values
and to explain the origin of their difference observed for very
similar structures. The above analysis shows that all pro-
cesses considered here should be taken into account when
interpreting the spectroscopic data of rare-earth impurity
centers.

V. CONCLUSIONS

The results of the present work allow us to conclude that
the developed second-quantization method within the frame-
work of virtual and real processes of charge transfer from a
ligand to a metal ion enables one to obtain mathematically
correct expressions for calculating the contributions of these
processes to the physical parameters of the impurity center,
as well as for calculating the transition amplitudes from first
principles. It is shown that these processes are to be taken
into account in the interpretation of experimental THFI data
of RE impurities. It should be noted that the expressions for
the operators of the considered one-particle processes are not
only applicable to THFI of the complete RE series but also
for impurity centers of other transition elements; i.e., they
are of general character. Moreover, these processes should be

taken into account when calculating other properties of the
impurity ion, i.e., its self-hyperfine interaction, crystal field
parameters, oscillator strengths of optical transitions, etc.

Experiment and calculations show that the appearance of
the hyperfine fields on the ligand nuclei is mainly determined
by the processes within the first coordination sphere. From a
quantitative point of view, the following refinements of the
calculations could still be considered. First, the contributions
of core polarization within the proposed approaches could be
calculated from first principles. Second, the influence of the
RYb-F distance on the calculated THFI parameters should be
further studied since this is the only �theoretical� input pa-
rameter in the model. One cannot exclude some influence of
the next coordination spheres surrounding the RE ion, i.e.,
via their inclusion in the �I+S�−1 matrix. The success in ex-
plaining the differences in THFI parameters, however, gives
us hope that also the optical data obtained in Ref. 24 will be
explained using the approach considered here.
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